\qquad

Quiz 3

2) ${ }^{2}$ For the magnet shown below, draw the magnetic field lines.

3) ${ }^{6}$ Jessica Watson, sailing Ella's Pink Lady off the coast of Australia where $B=60 \mathrm{nT}, 65^{\circ}$ upward from north, sees an α-particle with $q=$ $+2 e$ shoot straight down at $\mathrm{v}_{\alpha}=30 \times 10^{6} \mathrm{~m} / \mathrm{s}$.
a) ${ }^{2}$ Label the (six) directions indicated
b) ${ }^{2}$ Draw vectors for $\vec{v}_{\alpha}, \vec{B}$ and F_{B}
c) ${ }^{4}$ Find the magnetic force on the α-particle (mag. \& dir.).

$$
\vec{F}_{B}=q \vec{v} \times \vec{B} \Rightarrow F_{B}=q v B \sin \theta
$$

a) Shown on the diagram ... flipping it so that north is to the right would also work.
c) By the right hand rule, F_{B} is into the page. Since north is to the left, east is into the page and west is out. Thus the magnetic force on the α-particle is to the east.

$$
\begin{aligned}
& F_{B}=2\left(1.6 \times 10^{-19}\right)\left(30 \times 10^{6}\right)\left(60 \times 10^{-9}\right) \sin (155) \\
& \vec{F}_{B}=2.42 \times 10^{-19} \mathrm{~N} \text { to the east }
\end{aligned}
$$

