

 $(2)^2$ For the magnet shown below, draw the magnetic field lines.

2)⁶ Jessica Watson, sailing Ella's Pink Lady off the coast of Australia where B = 60 nT, 65° upward from north, sees an α -particle with q = +2e shoot straight down at v_{α} = 30 x 10⁶ m/s.

- a)² Label the (six) directions indicated
- b)² Draw vectors for \vec{v}_{α} , \vec{B} and \vec{F}_{B} c)⁴ Find the magnetic force on the α -particle (mag. & dir.).

$$\vec{F}_{B} = q\vec{v} \times \vec{B} \implies F_{B} = qvBsin\theta$$

a) Shown on the diagram ... flipping it so that north is to the right would also work. c) By the right hand rule, F_B is into the page. Since north is to the left, east is into the page and west is out. Thus the magnetic force on the α -particle is to the east.

> S

$$F_{B} = 2(1.6 \times 10^{-19})(30 \times 10^{6})(60 \times 10^{-9})sin(155)$$

$$\vec{F}_{B} = 2.42 \times 10^{-19} \text{ N to the east}$$

Key Name_